
 

 

UNIVERSITY OF CALIFORNIA, IRVINE 

Data Directed Optimization of Catalysts 

DISSERTATION 

submitted in partial satisfaction of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

in Chemical and Biomolecular Engineering 

by 

Hunter Noah Pauker 

 

 

Dissertation Committee: 

Assistant Professor Robert “Smith” Nielsen, Chair 

Professor Plamen Atanassov 

Professor Vy Dong 

 

 

 

2024 



 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
© 2024 Hunter Noah Pauker 



ii 

 

Dedication 
 

To 

 

My parents, Tony and Kristee, 

my brothers, Shane and Grant, 

my girlfriend Rory, 

my dogs, Kermit and Ferrous, 

all my family,  

the friends who I met here at UCI, 

and the friends I already made. 

 

You all helped me get to where I am today and made me who I am. Thank you. 

 

 

 
 
A quote 

It is not ok to just be smart. You must know everything.  

(Murray Gell-Mann) 

 

  



iii 

 

Table of Contents 
LIST OF FIGURES v 

LIST OF TABLES vi 

LIST OF SCHEMES vii 

Acknowledgements viii 

VITA ix 

ABSTRACT OF THE DISSERTATION x 

Chapter 1: Formate Generation and Dissociation via CO2 Insertion into Metal Hydrides 1 

Introduction 1 

Methods 2 

Results and Discussion 3 

Conclusion 9 

Chapter 2: Linear Free Energy Relationships of Formate Generation Among First Row 

Transition Metal Hydride Catalysts 10 

Introduction 10 

Results and Discussion 13 

Imputation 16 

Physical Meaning of Principal Components 24 

Degree of rate control 27 

New Ligand Development 30 

Cobalt Example 30 

Methods 32 

Conclusion 34 

Chapter 3: Free Energy Surface Prediction via Quantified Catalyst Properties Case Study: C-H 

Activation 36 

Introduction 36 

Methods 38 

Kinetics 38 

Computation 41 

Results and Discussion 42 

Ligand Data 42 

Tridentate Ligands 53 

Categorical Regression 56 



iv 

 

Conclusion 59 

References 61 



v 

 

LIST OF FIGURES 

Figure 1.1    NEB Calculations of Cp(bpy)FeII 5 
Figure 2.1    PCA Example Illustration 12 
Figure 2.1    Absolute TOF for Cp(bpy)FeII catalyst 16 
Figure 2.2    Ligand Family 17 
Figure 2.3    Number of Principal Components Effect on TOF 21 
Figure 2.4    TOF Heat Map in PC Space 23 
Figure 2.5    Catalysts in Principal Component Space 25 
Figure 2.6    Cobalt catalyst compositions 31 
Figure 2.7    CoII TOF Contour Plot in PCA Space 32 
Figure 3.1    FES of Ir NNC oxidizing methane to methanol 38 
Figure 3.3    Toy Ligands 41 
Figure 3.4    Ligand property correlation example 43 
Figure 3.5    Catalyst optimization algorithm 45 
Figure 3.6    In and out of sample initial predictions 48 
Figure 3.7    Data set building through PCA illustration 49 
Figure 3.8    Final regression prediction results 51 
Figure 3.9    Tridentate ligands 55 
Figure 3.10  FES of tridentate ligand catalysts 56 
  



vi 

 

LIST OF TABLES 

Table 1.1  Kinetic Isotope Effect with Experimental Results from Hazari et al.7 and Creutz et 

al29. 7 
Table 2.2   Coefficient Matrix Principal Components 1-4. 27 
Table 3.1   Tridentate Ligand Data 54 
Table 3.2   Categorical vs PLS Mean Squared Error (MSE). 59 
 

  



vii 

 

LIST OF SCHEMES 

Scheme 1.1    Formate Generation and Dissociation Scheme 3 
Scheme 2.1    General Catalytic Cycle 14 
Scheme 3.1    Abbreviated catalytic cycle 39 

 

  



viii 

 

Acknowledgements 

I would first like to express my deepest thanks to my committee chair, Professor Robert 

“Smith” Nielsen. You have given me so much in the years I have been here. We had a rough 

start: beginning working together in the middle of the COVID-19 pandemic. We persisted 

through and even through a computer screen you taught me so much about science, and more 

importantly, how to be a scientist. Without your support, guidance, and encouragement I would 

not be where I am now. I could not be more thankful to have such a kind, patient, caring, and 

understanding man leading me in my pursuit for knowledge. It was truly a privilege to work with 

you, Smith. 

I would like to thank my committee members, Professor Plamen Atanassov, and Professor Vy 

Dong. Your insight has helped me develop my writing to be more easily understood by a wider 

scientific audience. Thank you for the continual support and guidance you have given me in my 

time here at UCI. Your time and effort has been invaluable to me. 

I would also like to thank Jasmine Gutierrez for the great amount of work she provided for 

these projects. Thank you for your patience in learning the tools of computational chemistry. I 

know you’re going to be a great doctor someday soon.  

This work utilized the infrastructure for high-performance and high-throughput computing, 

research data storage and analysis, and scientific software tool integration built, operated, and 

updated by the Research Cyberinfrastructure Center (RCIC) at the University of California, 

Irvine (UCI). The RCIC provides cluster-based systems, application software, and scalable 

storage to directly support the UCI research community. https://rcic.uci.edu 

  

https://rcic.uci.edu/


ix 

 

VITA 

Hunter Noah Pauker 

2017-18 Student at Prof. Michael Sailor’s Summer School for Silicon Nanochemistry 

  University of California, San Diego 

2018-19 Research Assistant, for Prof. William Ristenpart in Pedagogy for Chemical  

Engineering, University of California, Davis 

2019   B.S. in Chemical Engineering, University of California, Davis 

2023  M.S. in Chemical Engineering, University of California, Irvine 

2024  Ph.D. in Chemical and Biomolecular Engineering, University of California, Irvine 

 

Field of Study 

Catalysis and computational chemistry 

 

Presentations 

ACS Fall 2023 Presentation. Division: Computers in Chemistry. Session: Data Science for 

Catalysis: Automated-Synthesis, Process Optimization & Catalyst Discovery. Data Directed 

Optimization of Catalysts. 

 

  



x 

 

ABSTRACT OF THE DISSERTATION 

Data Directed Optimization of Catalysts 

by 

Hunter Noah Pauker 

Doctor of Philosophy in Chemical and Biomolecular Engineering 

University of California, Irvine, 2024 

Professor Robert “Smith” Nielsen, Chair 

Optimizing matter via computational chemistry promises speed and chemical insight. 

However, many contemporary attempts oversimplify reaction mechanisms, use crude 

descriptions of materials, or utilize computational methods that lack rigor to exhaustively screen 

many compositions. Often these explorations of materials do not relate the properties of 

materials to one another or chemical concepts, and do not indicate whether an optimum 

composition has been discovered. To explore the possibility of quantitatively relating catalytic 

free energy surfaces (FES) to composition, we have computed (using DFT improved by select 

DLPNO-CCSD(T) calculations) FESs for two candidate reactions, and material descriptors for 

modular catalyst components. The electrocatalytic reduction of CO2 to formate was studied using 

cyclopentadienyl complexes of first-row transition metals. A surprising variety of rate-limiting 

steps was observed in this family, and predicted H/D KIE values can be used as a rubric to 

interpret new experiments. pH- and potential-dependent microkinetic models were used to 

generate turnover frequencies for optimization, and degree-of-rate-control analysis underscores 

the necessity of including multiple intermediates and transition states in the FES. Principal 

component analysis was utilized to reveal three degrees of freedom for catalyst optimization and 

the maximum turnover frequency within the composition space. Methane oxidation was studied 
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using IrIII complexes and ligands that varied in their σ, π, steric properties and charge. Various 

regression models related these chemical properties to DFT-derived FESs and predicted the FESs 

of catalysts not yet simulated.  Compositions with beneficial traits were added to the training set, 

refining the model iteratively.  The limitations of this approach were better understood and the 

combination of ligand properties that minimize the C-H cleavage barrier while preventing 

unwanted oxidation was identified.  
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Chapter 1: Formate Generation and Dissociation via CO2 Insertion 

into Metal Hydrides 

Introduction 

Global carbon dioxide emissions reached an all-time high in 20241, and these emissions are 

fueling the climate crisis. Non-renewable fossil fuels are driving these emissions up, and there is 

a greater need than ever to utilize more sustainable, renewable carbon resources. CO2 has the 

potential to be one of the most abundant and affordable precursors of carbon based chemicals2. 

The first step to produce carbon-based energy or products from CO2 is through reduction. 

Because CO2 is so thermodynamically stable, finding methods to reduce CO2 is a challenge that 

is as difficult as it is appealing. There has been progress made in the electrocatalytic reduction of 

CO2 to carbon monoxide, formic acid, formaldehyde, and formate3. Formic acid is a useful 

chemical feed stock, and conversion of CO2 to formate, and vice versa, has potential to store and 

release energy in a redox flow battery4,5. There is a great excess of CO2 produced in all facets of 

industry, and this cheap by-product has the potential to be used as energy storage.  

 There has been much progress recently in reducing CO2 through hydride transfer to the 

formate anion via organometallic homogeneous catalysis. Nitride carbide containing iron clusters 

in aqueous and mixed solvent have been shown by Berben et al. to reduce CO2 to formate6. 

Furthermore, they found that this process was tunable to creating formate or hydrogen gas but it 

was difficult to balance these two processes. Using a Ru(tpy)(bpy)PF6 complex, Hazari et al. 

have described two distinct forms of CO2 insertion mechanisms to these organometallic 

catalysts7,8. Similar to our findings Hazari sees first a hydride donation from the metal to the CO2 

to create formate, then a rotation of that formate to be bound via its oxygen atom to the metal. 

Harazi states that “outersphere” mechanisms are rate limited by the first step, while 
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“innersphere” mechanisms are limited by the second step. Hazari et al. claim that the rate of this 

first step increases as the ligand becomes more electron rich or less sterically bulky. The two 

mechanisms are distinguished by kinetic isotope effects7, and their rate is dependent on the 

presence of Lewis acids. After this, Yang and Ceballos utilized a Pt(dmpe)2 complex for CO2 

insertion, designed with thermodynamic principles in mind9. This catalyst was found to be 

reversible, but surprisingly slow. Yang and Ceballos determined that CO2 insertion or formate 

dissociation was found to be the rate limiting step.  

Through the course of this paper, we will show using the tools of computational chemistry the 

wide variety of catalytic routes of formate production and dissociation for two families of 

organometallic catalysts. The first family of catalysts contain an FeII center, a Cp ligand, and 

either two monodentate or one bidentate ligand. The final catalyst studied is Ru II(tpy)(bpy), a 

useful catalyst for benchmarking10. 

Methods 

All calculations were performed in ORCA 4.0.211,12. Free energies of molecules in solution 

were composed as 

G(1M) = Gsolv  + kTln(24.5) + ZPE + PV + Hvib + Htrans/rot - T(Svib + Strans + Srot + Selec)     Eqn1.1 

Two sets of DFT calculations were performed for each intermediate and transition state: a 

geometry optimization and hessian calculation in vacuum provided the thermal corrections, then 

a second geometry optimization was performed with the SMD13 implicit solvation model with 

water as the solvent to acquire a more accurate solvated electronic energy. The vacuum 

calculation was performed with the BP86 GGA functional14–16 with D3 dispersion 

corrections17,18 and the SVP basis set19. The solvation calculation was performed with the PBE0-

D3 hybrid functional15–18,20,21, TZVP(-f) basis set, with diffuse functions19 on oxygen. All 
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calculations used the Los Alamos pseudopotential and 3Z valence functions for metals22–24 and 

Weigend J Auxiliary basis sets25. Nudged elastic band (NEB) calculations were performed with 

ORCAs built in NEB algorithms. The free energy of a proton in water at pH 7 was -279.8 

kcal/mol26, adopting –264.0 kcal/mol as the hydration energy of a proton at 1M27. The free 

energy of an electron at -0.536 V vs SHE was -86.3 kcal/mol, using a 4.28 V difference between 

SHE and vacuum consistent with the proton hydration energy 28. 

Results and Discussion 

Several different catalysts had their FES calculated via DFT. After analyzing the FES of these 

catalysts, a general scheme was developed for these catalysts. The scheme is as follows, first is 

formate generation, then formate must dissociate from the metal. This general scheme can be 

seen in Scheme 1.1. It should be noted that this is the broadest form of this scheme, and for some 

catalysts certain intermediates or transition states may not exist. 

 

Scheme 1.1. Formate Generation and Dissociation Scheme 

Previously Hazari et al.7,8 showed that CO2 insertion into a metal hydride often takes place via 

a certain chemical pathway: first the hydride is donated to CO2 (we call this step hydride 

transfer), second the formate is bound via its hydrogen to the metal, third the formate rotates to 
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be bound to the metal via its oxygen (we call this step formate rotation). Hazari et al. coined 

reactions in which the  hydride transfer transition state (HT) are rate limiting are “outersphere”, 

and reactions in which the formate rotation transition state (FR) are rate limiting are 

“innersphere.”7,8 It was found for the family of catalysts we simulated with DFT that both 

transition states can be significant, and that there are formidable barriers to dissociate formate 

which cannot be ignored either. 

Through NEB calculations, both HT and FR transition state barriers have been seen as stable 

for the Cp(bpy)FeII and Ru(tpy)(bpy) catalyst. After either HT or FR barriers there are also 

barriers to dissociate the formate from the metal. Post HT transition state the formate may bind 

to the catalyst via the C-H bond, and post FR transition state the formate may bind via its oxygen 

to the metal atom. After the HT barrier the formate may then go through the FR transition state, 

but this would then require the formate to dissociate once bound via its oxygen to the metal 

atom. Instead, the formate can also dissociate once it is bound via the C-H bond to the metal. 

These dissociation barriers, HD for hydrogen bound formate dissociation, and FD for oxygen 

bound formate dissociation, are non-negligible and can be as large as the HT and FR barriers. 

The catalyst Cp(CO)2FeII was found to not have a stable HT barrier via DFT simulation. This 

is what Hazari et al. would dub an “innersphere” reaction. These catalysts with a FR type kinetic 

scheme have a higher FR barrier than the FR barrier seen in catalysts displaying a HT scheme. 

This is believed to be because the reaction itself is incredibly uphill. Because the FR barrier is so 

high, it overshadows the HT barrier as the reaction as a whole is so uphill. 

The catalyst Cp(acac)FeII was not found to have a stable FR or HT transition state. This is 

because this catalyst is so hydridic, but that does not make it a good catalyst. The vacant metal 

+2 intermediate and the oxygen bound formate intermediate were found to be free energy sinks, 
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at nearly -27 kcal/mol relative to the starting hydride intermediate, which would make for a very 

slow TOF. This catalyst exemplifies why an overly hydridic catalyst is counterproductive. 

Although the rate of hydride donation is very fast, regeneration of the catalyst is incredibly slow.  

These findings underscore the wide variety of free energy surfaces that a catalyst going through 

this cycle may go through. 

 

Figure 1.1. NEB Calculations of Cp(bpy)FeII
. This figure illustrates the findings from NEB 

calculations for the Cp (bpy) FeII catalyst: a wide variety of transition states and intermediates 

may occur along the reaction path to free formate. Furthermore, it shows that some intermediates 

in one path may be present in the other, like the formate bound to the metal through the hydrogen 

bond.  

The kinetic isotope effect (KIE) may be calculated via:  

KIE=exp((ΔGD-ΔGH)/RT),                  Eqn 1.2 
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Where D denotes the deuteride version of the catalyst, and H denotes the hydride version of 

the catalyst. In this calculation, only the thermal corrections were recalculated, and the electronic 

energy remained unchanged. Additionally in this equation, ΔG may be represented as:   

ΔG=GTS-Greactant                   Eqn 1.3 

Where GTS is the Gibbs free energy of the transition state, and Greactant is the Gibbs free energy 

of the reactant immediately prior to the transition state. The specified atomic masses in these 

calculations were 1.008 AU for hydrogen and 2.014 AU for deuterium.  

Each of these barriers discussed thus far also has a unique kinetic isotope effect (KIE) 

associated with it. The KIE may be used to differentiate between either barrier. Both HT and FD 

display inverse KIE while HD and FR display KIE. It should be noted that there is known error 

for DFT, on the order of several kcal/mol, which correlates to near 25% error in KIE. While this 

error is large, and non negligible, the importance of these DFT calculated KIE is to differentiate 

between KIE and inverse KIE. It should also be noted that the first line of FD barriers seen in 

Table 1.1 are relative to the oxygen bound formate intermediate, while all other barriers are 

relative to the Mn+2H starting intermediate hydride. An additional line is added that shows the FD 

barrier relative to the starting intermediate denoted with an asterisk.  

 
 

DFT Experimental  
 

Cp(CO)2

MnI 

Cp(CO)2

FeII 

Cp(bpy)

FeII 

RuII(tpy)

(bpy) 

[Ru(tpy)(bpy)D]

PF6* 

Ru(tpy)(bpy) 

HT 1.05 
 

1.14   CO2 Insertion7: 

 0.86±0.09 
 

Decarboxylation29: 

1.15±0.1 HD 0.57 0.79 0.67 0.69 

FR 0.58 0.74 0.59 0.75 

FD 1.07 1.16 1.02 0.97 

FD* 0.50 0.49 0.46 0.48 
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Table 1.1. Kinetic Isotope Effect with Experimental Results from Hazari et al.7 and Creutz et 

al29. 

In addition to these catalysts the FES was calculated via DFT for an additional catalyst, 

Ru(tpy)(bpy), the same as that utilized by Creutz et al29, but distinct from the 

hexaflourophosphine catalyst utilized by Hazari et al.7, this catalyst was found to have several 

transition state barriers during formate generation and dissociation. The first barrier, found via 

NEB calculation, was an unidentified transition state presumed to be hydride transfer. This 

barrier was not confirmed via normal DFT transition state geometry optimization. The barriers 

that were confirmed via DFT transition state geometry optimization were FR, HD, and FD 

barriers. Additionally the DFT calculated hydricity of this complex was found to be 38.3 and 

17.8 kcal/mol for acetonitrile and water respectively30. This is comparable to the experimental 

values obtained by Creutz et al. of 39±3 and 22 kcal/mol10. 

The larger difference seen in DFT vs experimental between the hydricity in water vs 

acetonitrile, ~4 and ~1 kcal/mol respectively, is understandable. Changes in solvent quite 

drastically change hydricity30. The accuracy of the calculations compared to experimental work 

is practically the same if not better when the solvent is changed from water to other polar 

solvents.  

Finally as seen in Table 1.1, although no KIE is calculated for a HT for the Ru complex, it 

would make sense that the transition state seen by Hazari et al7. is similar to our FR transition 

state. Furthermore, it would make sense from our results that the decarboxylation transition state 

seen by Creutz et al.29 is similar to the FD transition state. It should be noted that although this 

FD transition state is formate leaving the oxygen bound formate intermediate, like that described 
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by Creutz et al, this barrier is not the same as in our FD transition state formate displaced by 

water. As mentioned before, there is inherent error in DFT especially with transition state metals, 

so several kcal/mol difference is to be expected. The trends of these transition states and 

intermediates are still quite clear despite these several kcal/mol differences. Because DFT 

calculations have a several kcal/mol error the KIE has a relatively larger error, however DFT 

calculations are still able to show the general trend of formate rotation displaying inverse KIE.  

 

 

Figure 1.2. Ruthenium Free Energy Surfaces. Experimental data from Creutz et al31. 

The energies of transition states and intermediates were relatively similar to those reported by 

Hazari et al7. usually only having a several kcal/mol difference. Although the relative Gibbs free 

energies seen in Figure 1.2 are quite different between experimental and calculated, especially 

for the dissociation reaction, this is because they are compared to the Mn+2H starting 
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intermediate. The overall TS energies compared are relatively similar between DFT and 

experimental. 

Conclusion 

Through calculating and analyzing the DFT generated FESs of CO2 insertion and formate 

dissociation in this family of catalysts, several conclusions have been drawn. A wide variety of 

FES can appear on this family of catalysts, more than seen by Hazari et al. and their 

Ru(tpy)(bpy)PF6 catalyst. This family of Cp ligand bearing catalysts may have a transition state 

barrier to donate the hydride to CO2, dubbed the hydride transfer barrier (HT), and a barrier for 

the formate to rotate to become bound to metal, dubbed formate rotation (FR). After either 

barrier the formate may stick around or bind to the metal, and there is a dissociation barrier that 

must be overcome to free the formate from the metal through its hydrogen or its oxygen, dubbed 

hydride dissociation (HD) and formate dissociation (FD) respectively. All these barriers may be 

differentiated by kinetic isotope effect. Furthermore, it was found that catalysts may display both 

HT and FR barriers, or only a FR barrier.  
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Chapter 2: Linear Free Energy Relationships of Formate 

Generation Among First Row Transition Metal Hydride Catalysts 

Introduction 

Computational chemistry has been utilized for many years to better understand catalyst 

behavior. With computational costs decreasing and improvements in computational accuracy 

increasing, computational chemistry is a more appealing tool than ever to analyze catalyst 

behavior. Computational chemistry allows for large generation of data sets with relatively 

cheaper costs and time compared to performing experiments in a laboratory setting. 

 Catalyst families are known to have linear free energy relationships (LFERs)30,32. Among 

related compositions, the energy of two elementary steps is often found to correlate linearly or at 

least follow a predictable relationship. Understanding these relationships is instrumental in 

conceiving novel catalysts with desired properties33. The subject of this text is to develop 

mathematical tools for deliberately uncovering and quantifying LFERs among the steps of 

catalytic reactions. We present a case study by illustrating a process for discovering these 

relationships using the electrochemical reduction of CO2 to formate. There has been precedent in 

the study of LFERs with hydride transfer. Dubois et al. mapped free energy relationships 

between hydride transfer and one electron reduction potentials of molecular catalysts through 

years of  electrochemical experimental work32,34,35. Appel et al. described how the TOF 

correlated with the hydricity of Cobalt catalysts36. 

Do and Ngo studied the structure-activity relationship for a group of Cp*Ir based catalysts 

performing ketone hydrogenation, finding that there is more than just hydride transfer that is 

influential to TOF in this family of catalysts37. Studies that elucidate LFERs in hydricity are 
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important but relationships among structural elements of catalyst composition and all steps of the 

reaction must be described to make use of these relationships. 

When properties or components of the catalyst change so does the FES, and changing one 

intermediate or transition state energy will inherently change another. This means that within a 

family of catalysts modifying those catalysts to a “perfect” flat FES may not be possible. Like 

the Sabatier principle, a balance must be found in all barriers and intermediates in finding the 

smoothest, flattest FES. 

A great challenge is how to discover and describe these LFERs quantitatively. The LFERs 

dictate constraints on the catalytic FES, and therefore limit catalytic performance. These 

relationships must be understood to optimize the FES for stability, activity, and selectivity. 

Furthermore, understanding these relationships may teach chemical lessons. Learning these 

chemical lessons can aid in tuning these catalysts and can also be useful in other applications.   

Principal component analysis (PCA) is a method of analyzing multidimensional data in the 

form of an array38. New axes are constructed that are orthogonal linear combinations of the 

previous dimensions of the array. These PC dimensions lie in real space in the direction of the 

most variance of the original array. PCA eliminates linearly dependent dimensions and tells the 

user how many distinct linear dimensions can be used to describe the system. PCA is an 

incredibly useful tool in turning the FES in real space into a more legible form. By examining the 

domain of PC space one can realize the range of real space. 
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Figure 2.1. PCA Example Illustration. The PCA axes (red arrows) illustrate how principal 

component constructed axes lie in real space relative to the data points (blue circles).  

The 200 points in Figure 2.1 do not show actual chemical data and are just dummy values used 

to illustrate the power of PCA. Each data point is blue, and each principal component axis is a 

red arrow. Each arrow is proportional in size to the amount of variance said axis describes. 

Seeing these data points from two different perspectives makes it clear that although this data 

exists in three dimensions it essentially lies in a plane. The first two principal components 

describe this plane, and the third shows the relatively small spread in and out of this plane. The 

first principal component describes the majority of the variance or spread of this plane, and the 

second axis describes the second most amount of spread perpendicular to the first.  

PCA will be used throughout the course of this paper to find quantitative measures of how far 

a catalyst can be changed along a certain dimension using the compositions in this study. A sort 

of principal component volcano pot is made that essentially allows one to navigate the reduced 

space to find a realistic optimum more easily. Furthermore, if dimensions can be interpreted 

physically, chemical lessons can be learned.  



13 

 

Results and Discussion 

Great progress has been made recently in reducing CO2 to formate via hydride transfer with 

organometallic catalysts, making it an ideal candidate to study LFERs. Berben et al. have 

reduced CO2 to formate with nitride carbide containing iron clusters6. Hazari et al have described 

two distinct transition states and mechanisms during CO2 insertion to Ru(tpy)(bpy)PF6
7

 and 

(tBuPCP)NiH complexes8. The general catalytic cycle may be seen in Scheme 2.1. This is the 

most general catalytic cycle, as will be discussed in this text, other cycles exist which exclude 

certain transition states or intermediates.  

The first transition state is the hydride being transferred from the metal to CO2, dubbed hydride 

transfer (HT) transition state. The second transition state is the formate anion rotating from being 

bound via the hydrogen to being bound via the oxygen, dubbed formate rotation (FR) transition 

state. Utilizing DFT calculations with a different family of catalysts, with Fe II center, two 

monodentate or one bidentate ligand, and a Cp ligand, we have confirmed the presence of these 

two transition states, and that these two transition states may happen one after the other (HT then 

FR). We have also determined that sometimes a catalyst does not have a stable HT barrier, and a 

FR barrier is only present. In cases like these, the FR barrier is often higher than catalysts where 

a HT barrier is stable. This is believed to be because the FR barrier overshadows the HT barrier. 

In addition to these barriers, DFT calculations have also confirmed the presence of nontrivial 

formate dissociation barriers. Once through the HT barrier, formate is bound via the hydrogen to 

the metal, and can dissociate via a hydrogen bound formate dissociation (HD) or can rotate 

through the FR barrier. Once bound via oxygen, formate may dissociate via the oxygen bound 

formate dissociation barrier (FD).  These barriers are non-trivial and may be on the order of the 

HT and FR barriers. 
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Scheme 2.1. General Catalytic Cycle. This catalytic cycle is the most general. One other major 

catalytic cycle is seen for the family of catalysts discussed in this text. That cycle excludes the 

HT and HD transition states, and M-HCOO intermediate.  

Post formate generation and dissociation, the catalyst must be regenerated. Utilizing DFT 

calculations we have also found that this region of chemical space can vary widely. The first step 

of regeneration was always found to be reduction. After this is either a protonation then a second 

reduction, or vice versa. The protonation barrier was assumed to be the same height for either 

protonation.  

Turnover frequency (TOF) is an excellent way to quantify catalyst performance, and is a 

function of the conditions (potential, pH, and temperature), concentration of products and 

reactants, and the FES itself. With an established FES, as seen in Scheme 2.1, a microkinetic 
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model may be built to calculate TOF for each catalyst. Two models in fact can be built: one 

model assumes that a catalyst can go through the HT and HD barriers, and the other assumes the 

lack of HT and HD barriers. Utilizing two models, rather than one, more accurately quantifies 

catalyst performance. Utilizing the equilibria and rate limiting equations built off of the rates 

seen in Scheme 1, each microkinetic equilibria was built with the following assumptions: all 

intermediates are conserved, the concentration of CO2 is constant, and both formate and formic 

acid are conserved in equilibrium. With these assumptions, balance equations around formate 

bound species (M-OCHO and M-HCOO for HT scheme and M-OCHO for FR scheme) and 

metal hydride species can be created which assumes these concentrations are constant in time. 

By substituting equilibria and rate constants in terms of Gibbs free energies, the concentrations 

may be solved in these balance and conservation equations. These concentrations, now as 

functions of Gibbs free energies and conditions, may be utilized to create the TOF as a function 

of the FES and conditions of the system. 

Two distinct catalytic schemes were created: one with a HD and HT barriers, and one without 

these barriers, dubbed the HT and FR schemes respectively. Two distinct schemes means that 

two distinct TOFs, a TOFHT and TOFFR, can be utilized to quantify catalyst performance. Rather 

than using human intuition to decide which TOF should be used to quantify catalyst 

performance, a support vector machine (SVM) was trained and used to decide which TOF a 

catalyst should use. This SVM was trained on the partial FESs (FR, M-OCHO, FD, Mn+2, M-W, 

Mn+1, Mn, and Mn+3H states) of the first seven catalysts as listed in Figure 2.4. 

Some catalysts greatly prefer one regeneration pathway over the other, and for some catalysts a 

protonation before a second reduction or vice versa may be completely unstable. The variety in 

these regeneration steps means that the FES, and therefore the turnover frequency (TOF), is 
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greatly dependent on the conditions of the catalyst. The effect of pH and potential on TOF can be 

seen for the Cp(bpy)FeII catalyst in Figure 2.1. This figure displays absolute TOF, which is why 

there is a line with a negative slope down the figure, this line is when the reaction flips and runs 

in reverse. The bottom half of the figure is the forward reaction, and the top half is the backward 

reaction. 

 

Figure 2.1. Absolute TOF for Cp(bpy)FeII catalyst. The downward sloping line through the 

middle divides the bottom half as the forward reaction (CO2 to formate), and top half as the 

backwards reaction (formate to CO2). 

Imputation 

Many more FESs were generated in this Cp family, now utilizing other metals in period 4, 

manganese and cobalt, and various other ligands. These ligands include but are not limited to 

those seen in Figure 2.2. 
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Figure 2.2. Ligand Family. The ligands seen in this figure are all ligands utilized in mapping the 

LFERs of this family of catalysts. All catalysts utilized one of the three Cp ligands, and one 

bidentate ligand or two carbonyl ligands.  

With more FESs for catalysts in this family LFERs can be elucidated. Principal component 

analysis is an excellent way to analyze these LFERs. However, to perform PCA on these FESs, 

holes in these FESs need to be addressed. As stated previously, for some catalysts some 

intermediates or transition states are completely unstable, therefore the Gibbs free energy for that 

state may not be found for that catalyst. These holes may be filled in with PCA via imputation39, 

a method of matrix completion which relies on PCA. The FES is arranged in an array, with the 

rows corresponding to the catalyst, and the columns corresponding to the intermediate or 

transition state.  Each hole is filled with the average of the column, or intermediate free energy, 

then PCA is performed on the FES. From this value, a score and coefficient matrix is produced. 

The scores, or PC values, can be converted back to a FES by multiplying the score matrix by the 
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coefficient matrix, which produces a slightly different FES with some errors. The original FES is 

kept, any values that were originally holes are replaced with the score predicted values. This 

process is repeated until the holes converge on a value: PCA is performed on the new FES, a 

score is acquired, the score is turned back into a FES, and the original FES remains with only the 

holes replaced with the score predicted values. 
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Table 2.1. Gibbs Free Energy Surface of Catalytic Cycle (kcal/mol). Additional values of all 

catalysts can be found in the SI. Imputed values are in italics. The best calculated FES was found 

through PCA composition space navigation. 

The whole FES data may be seen in Table 2.1, with the imputed values in italics. It is 

important to note that when the holes are predicted from the scores, not all the possible PCA are 

utilized to predict these values. Most of the variance in data may be captured in only a few 

principal component axes. In this case only two principal components were utilized to predict the 

holes, as 93.2% of variance is captured within the first three principal component axes, and 

utilizing more principal components gave unrealistic values for certain intermediates. Utilizing 
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more than three principal components may lead to inaccurate imputation, skewing TOFs, as 

utilizing principal components that capture such small amounts of variance may just contribute 

to noise. 

It should be noted that there is error with imputation, and that imputation can affect higher 

order (latter) PCA scores, and interpretation of those scores. As stated, DFT has inherent error, 

on the order of several kcal/mol, and imputation can have error on that lever or even larger. It is 

important to examine how imputation fills out data and use intuition to address poorly imputed 

data. 

 

Figure 2.3. Number of Principal Components Effect on TOF. As the number of principal 

components increases, the accuracy of the predicted TOF increases, however with only 3 

principal components the TOFs nearly converge.  
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As seen in Figure 2.3, the number of PC utilized to predict a FES greatly impacts the TOF. In 

this figure, the use of zero PCs corresponds to the FES being predicted for all catalysts as the 

average across all 15 catalysts. Some intermediates or transition states of the FES greatly impact 

the TOF by orders of magnitude when said energies fluctuate by only a few kcal/mol. 

Furthermore, it can be seen from this figure, that the TOFs quickly converge by 3 PCs. When too 

few PCs are utilized the chemical behavior of the LFERs are not accurately captured, however 

with more and more PCs utilized the behavior of these PC is captured but noise captured by 

latter PCs is introduced. This noise can lead to errors when imputing or predicting catalysts 

outside of the data set. A balance must be found in accurate predictions with minimal error.  

As seen through imputation, principal component analysis can be incredibly useful because 

score space can easily be turned into real space, and vice versa. With scores imputed, PCA 

performed on all the FESs resulted in 98.7% of the variance being captured in the first three 

principal components. This means that for this family of catalysts there are essentially only three 

variables that can be changed to alter the FES of the catalyst. Finding the optimal catalyst along 

these three PC axes is much simpler than exploring a catalyst system with 11 dimensions.  
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Figure 2.4. TOF Heat Map in PC Space. This heat map of TOF was created by creating a 

50x50x50 grid spanning 2.5 times the standard deviation of scores of the 15 catalysts. Each point 

in PC space can be converted to a FES, and each FES can be converted to a TOF. Visualizing the 

LFERs in this way allows for ease of navigation in composition space, and realization of the 

maximum performance capabilities in this family of catalysts.  

To navigate this space, a map first needs to be made, as seen in Figure 2.4. This heat map 

corresponds to the TOF of the PCA space, and where known catalysts lie in this space. A 50-by-

50-by-50 evenly spaced grid was constructed that spanned roughly the maximum and minimum 

of the first three scores of this family of catalysts: two and half times the standard deviation of 

scores of each PC axis. It was assumed that all scores, besides the first three principal 
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components seen in this map, were zero. Of any catalyst in this family chosen at random zero is 

the most likely score, as it is the average across all principal component scores. Each point in this 

map was turned into a FES, and each FES was turned into a TOF. A transparent color heat map 

was then constructed of these catalysts corresponding to the log10(TOF). 

Within this heat map the PCA predicted the best theoretical catalyst can also be found. This 

theoretical catalyst doesn't really exist, and the composition is unknown, it is simply the PCA 

point in space that corresponds to the fastest TOF. This TOF is 0.0360 s-1, compared to DFT 

calculated fastest TOF, Cp(bpyNH2)FeII, ([2,2’-Bipyridine]-5,5’-diamine), of 0.00079 s-1, is quite 

high, however, the change in PCA components to get from the best DFT calculated score to the 

best PCA predicted score is reasonable for this change in magnitude of TOFs. More than being 

the best predicted PCA point in space, this value of the best TOF is more indicative of the limits 

of the current family of catalysts.  

Physical Meaning of Principal Components 

Possibly the most useful aspect of PCA is interpreting what each principal component axis 

physically means. Making chemical sense of these axes can provide chemical lessons that can be 

applied to other scenarios, as well as better improve the performance of catalysts in the given 

family. 

It is important to realize that when interpreting scores, the signal gets smaller with the later 

scores. This is because the first principal component captures the most variance across the data, 

and each axis thereafter captures less and less variance in the data. With a smaller magnitude the 

variance of these principal component values can be nearly the same order of magnitude as the 

error. All this is to say that the coefficient matrix, the operator that turns real world data (FES in 

this case) into scores, can be just as useful if not more useful than examining the scores. The 
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weights on the coefficient matrix are always nearly the same order of magnitude, regardless of 

the amount of variance in data. These weights can be telling of the largest influence on each 

principal component axis. 

 

Figure 2.5. Catalysts in Principal Component Space. Viewing the catalysts in PC space is a 

powerful tool to qualitatively distinguish catalyst properties and discern the physical meaning of 

the PC axes.  

Looking at both the scores as seen in Figure 2.5, and coefficient matrix, as seen in Table 2.2, 

one can interpret the physical meaning of the largest principal component axes. The first 

principal component, accounting for 82.0% of variance has to do with electrophilicity and is 

possibly influenced by charge. It is affected by all three components of composition of the 

catalyst, the Cp ring, the metal, and the L2 ligand. A large positive coefficient , see Table 2.2, is 
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seen in the coefficient for any intermediate where electron density is removed from either a pi or 

sigma orbital, like in the vacancy, water, and oxidized hydride intermediates.  

The second principal component, accounting for 17.2% variance, appears to be influenced by 

the reduced intermediates, like the Mn+1 and Mn states. This reducibility may be achieved by the 

metal or the ligand. This is evident through the bpy and pytria ligand containing catalysts having 

extreme values for the second score as seen in Figure 2.5. The cobalt compounds are extremely 

electrophilic which is how they achieve high reducibility. This score is helpful in interpreting 

why the (bpy)Fe complexes have the best performance of any catalyst. Although iron is hard to 

reduce it more easily allows for hydride transfer as it is not so electrophilic. Catalysts that 

contain bpy are easy to reduce because the ligand itself is reducible, which makes regeneration of 

the catalyst much easier.  

The third score, accounting for 5.9% of the variance, is difficult to comprehend. It has the 

highest magnitude coefficients for the FD transition state and the vacancy Mn+2 metal. When 

interpreting Figure 2.5, changes in composition are confusing. Changing one constituent on a 

catalyst may have changing the Cp to Cp* in Cp(dmpe)FeII (black diamond to black plus) 

changes PC3 by +7.4 kcal/mol, while the same change with Cp(CO)2FeII changes PC3 by -6.6 

kcal/mol. On the other hand changing from Fe to Mn with Cp(CO)2FeII, CpAc(dmope)FeII, and 

CpAc(dmpe)FeII changes PC3 by -5.4, +3.7, and +11.4 kcal/mol respectively. The latent value of 

PC3 is 4.6 kcal/mol as seen in Table 2.2. This is larger than we expect of nonsystematic DFT 

errors. This is evidence that changes in composition are not additive in PC3 so the relationship 

between composition and free energies in not linear. Because the FD barrier (negative 

contribution to PC3) is seven coordinate and the vacant intermediates (positive contribution to 
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PC3) are essentially five coordinate, PC3 appears to be related to steric crowing around the 

metal.  

 PC1 PC2 PC3 PC4 

HT 0.09 0.01 -0.03 0.00 

FR 0.32 0.15 0.01 -0.45 

M-OCHO 0.17 0.20 -0.21 -0.02 

FD 0.23 0.25 -0.61 -0.16 

Mn+2 0.39 0.31 0.61 0.06 

M-W 0.27 0.13 -0.03 -0.04 

Mn+1 -0.10 0.44 0.36 0.13 

Mn -0.43 0.53 -0.23 0.37 

Mn+3H 0.54 -0.21 -0.15 0.74 

HD 0.30 0.21 -0.09 -0.22 

PT 0.07 0.45 -0.08 0.10 

% Explained 

Variance 82.0 15.6 1.1 0.6 

Latent 

(kcal/mol) 39.5 17.2 4.6 3.4 

Table 2.2. Coefficient Matrix Principal Components 1-4. 

Degree of rate control 

The degree of rate control (DRC) initially described by Campbell et al.40,41 is a method of 

computational catalyst screening. This technique is performed by first developing a microkinetic 

model of a catalyst reaction path. Once a catalysts FES is known the TOF can be calculated via 

the microkinetic model. The next step is to use simple numerical methods to approximate the 

change in TOF with respect to the change in each intermediate Gibbs free energy along the 

catalyst reaction path40. For a FES with n total intermediates and transition states, m, and a small 
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numerical perturbation, delta, the change in TOF with respect to changing intermediate m i can be 

written as,  

𝑑TOF

𝑑𝑚𝑖
= −𝑅𝑇

log10 TOF(𝑚1,…,𝑚𝑖+𝛿,…,𝑚𝑛)−log10 TOF(𝑚1,…,𝑚𝑖−𝛿,…,𝑚𝑛)

2𝛿
                                           Eqn 2.1 

The appeal of this method discussed by Campbell et al. is that it shows which steps in the FES 

do or do not have significant impact on the TOF40. Then if the FES of catalysts of similar enough 

composition are via computational chemistry, fewer steps in the FES need to be calculated for 

those catalysts. However, its use is beyond screening, and chemical insight can be gained from 

this method, especially for catalysts with highly varied compositions like the ones discussed in 

this text. 
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Table 2.3. Degree of Rate Control Effect on Catalyst TOF. 

Examining table 2.3, the intermediates and transition states in which the TOF is most affected 

greatly vary as catalyst composition changes. For one of the best catalysts, Cp(bpy)Fe, the two 

most influential states are the metal-oxygen bound formate, and the formate dissociation barrier. 

Changing the bpy ligand to bpyNH2, causes the most important states to be the water-metal 

complex, and the proton transfer barrier. Although these catalysts are nearly the same and have 

nearly the same TOF at ~10-3 s-1, their most important states are quite different, due to the amine 

group on bpy changing the ease of reducibility of the catalyst. The best PCA predicted catalyst 

tells a different story than the rest, the biggest sinks are the oxygen bound formate and starting 

intermediate, while the barriers are hydride transfer, proton transfer, and formate dissociation. It 

should be noted that as the catalyst moves towards an optimum fastest TOF, the distribution of 
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what is the most influential rate determining step begins to become less clear, and different rates 

and sinks compete with each other. This can be seen with the change from Cp(bpy)Fe II to 

Cp(bpyNH2)FeII then the PCA best predicted catalyst: at first it is clear there is one major sink and 

barrier, then as one barrier drops or sink rises another barrier or sink becomes more influential.  

Other catalysts like Cp(CO)2FeII, Cp(dmpe)FeII, and Cp*(dmpe)FeII are heavily influenced by 

FR and PT barriers, and Mn+3H and M-W and Mn+2H intermediates. All this is to say that at 

different points in composition space, the TOF is affected by different parts of the FES.  

New Ligand Development  

Utilizing the TOF heat map as seen in Figure 4, several novel compositions were created in an 

attempt to get closer to the maximum TOF. The dmope and dmopy ligands were created to try 

and make the dmpe ligand more electrophilic and a better pi acid. By having ligands with these 

properties, it was theorized the iron would be more electron deficient, therefore easier to reduce. 

Although the DFT generation of these FES was a great experiment, no catalysts containing either 

of these ligands had a better TOF than the Cp (bpy) FeII catalysts. It is clear from Figure 4 that 

while changing dmpe to dmope moved the catalyst farther away from peak performance, 

changing dmpe to dmopy was a move in the right direction towards the high TOF PCA space 

that bpy complexes lie in. However, this movement was not far enough in that direction.  

Cobalt Example 
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Figure 2.6. Cobalt catalyst compositions. In this analysis the ligand requirements were not quite 

as constrained as the previous analysis: here the ligands differ in functional groups, hapticity, and 

flexibility.  

In previous the discussion we purposely chose modular ligands. In this analysis we wanted to 

see if the same method would still provide insight without as constrained or organized a 

composition space.  In this analysis the catalysts utilized CoII as the metal center, but differing 

types of ligands as seen in Figure 2.6. An abbreviated FES—formate formation transition state 

(TS) and Mn-2, Mn-1, Mn+3H, M-H, M-OCHO, and MW intermediates—was calculated for six 

distinct catalysts. With this abbreviated FES a simpler kinetic scheme was utilized to calculate 

the TOF to quantify catalyst performance. In addition to quantifying catalyst performance with 

TOF, PCA was also performed to assess the composition space. Although PCA was performed 

on six distinct points in free energy space, only two principal components described 97.2% of the 

variance. Using the same method as seen in Figure 2.4 these catalysts can be plotted on a two-

dimensional TOF heat map as seen in Figure 2.7.  These points lie on a line except for 

Cp(bpy)CoII. What this means is that for all other five catalysts only one property is really 

changing as the ligands change. Looking at the coefficient matrix, in the first PC the largest 
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values are the oxidized states, while the lowest values are reduced states. For the second PC, the 

largest values by a wide margin are the two reduced states. For all the other catalysts these 

properties are a give and a take, as you change the catalyst’s ability to be reduced you change its 

ability to be oxidized. To get off said line, and towards different chemical composition and 

behavior, the catalyst properties need to change drastically. The catalyst Cp(bpy)Co II lies of the 

line because the bipyridine ligand is reducible. 

Plotting catalysts in PCA space allows for ease of navigation in chemical composition. 

Without requiring any chemical intuition PCA space plots elucidate LFERs, and chemical 

lessons that might not be seen by looking at a FES table.  

 

Figure 2.7. CoII TOF Contour Plot in PCA Space. Like Figure 4, this figure correlates each point 

in PC to a FES, and each FES to a TOF. These figures allow for ease of navigation in chemical 

composition space, and paired with coefficients matrices can teach valuable chemical lessons.  

Methods 
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All calculations were performed with ORCA 4.2.0 software11,12. For each Gibbs free energy 

calculation, two distinct DFT calculations were performed. The first was a simpler calculation in 

vacuum utilizing the bp8615,16,42 functional and SVP basis set19. This calculation was utilized to 

calculate thermal corrections, and to more quickly get closer to an optimized geometry with a 

faster calculation, decreasing computational costs. The second DFT calculation performed 

utilized the PBE0 functional15,16,20,21, TZVP(-f) basis set, and minimally augmented TZVP(-f) 

basis set on oxygen atoms19, and the SMD implicit solvation model13 with water as the solvent. 

This more rigorous calculation was utilized to more accurately calculate solvation effects and the 

single point energy. Both sets of DFT calculations utilized the  Los Alamos pseudopotential and 

3Z basis set and effective core potentials on the metal atoms22–24, the D3BJ dispersion 

corrections17,18, and the Weigend J auxiliary basis set25.  

For relative free energy calculations it was assumed the hydration energy of a proton was -264 

kcal/mol27, making the free energy of a proton in water at a pH of 7,  -279.8 kcal/mol26. 

Similarly, the free energy of an electron at voltage of -0.536 V vs SHE, was assumed to be -86.3 

kcal/mol28. 

There is known error with DFT, and to improve the accuracy of these calculations an 

isodesmic correction was made to all free energies. A more rigorous calculation, DLPNO-

CCSD(T) with ZORA approximation, was performed on the full FES of two catalysts43–47. These 

calculations utilized the geometries from the converged solvated PBE0 calculations. A (3,4) 

infinite basis set extrapolation48 utilizing the cc-pvNZ basis set where N is the cardinal number 

was performed for all values49. The difference between the CCSD(T) and DFT calculated Gibbs 

free energy was used as the isodesmic correction. These values are seen as the first line in Table 

1.  
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Conclusion 

Through the course of this text, we have examined the linear free energy relationships (LFER) 

of a family of catalyst containing a Cp ligand, two monodentate or one bidentate ligand, and a 

Period 4 metal. The free energy surfaces (FES) of these catalysts were generated via density 

functional theory (DFT) with an isodesmic correction calculated via CCSD(T). The free energy 

surfaces consist of generating formate via hydride insertion into CO2, dissociation of said 

formate once bound to the metal, and finally regeneration of the catalyst via two reductions and a 

protonation. It was found that this family of catalysts displays wide variety in their FESs, and the 

path of least resistance may vary greatly from catalysts to catalyst. Catalyst performance was 

quantified via turnover frequency of each catalyst found via microkinetic model. It was found 

that the TOFs are heavily dependent on the conditions of the system (pH and applied voltage). 

Additionally, some catalysts may have intermediates or transition states that are unstable and do 

not exist for other catalysts. To better understand the LFERs of these catalysts, principal 

component analysis (PCA) was performed on this family of catalysts. To fill out unknown or 

nonexistent values of intermediate or transition state free energies, imputation, a form of matrix 

completion, was performed on a matrix consisting of the DFT generated FES of all catalysts in 

this family. Through examining the coefficient matrix generated by PCA, and examining the 

catalysts in PC space, two major properties were found to affect catalyst behavior. The first and 

most influential PC corresponded through electrophilicity, and the second PC corresponded to 

reducibility.  

The PC space created by the known FES was examined to realize a maximum TOF: of this PC 

space itself of 0.0360 s-1. This was several orders of magnitude different than the best DFT 

calculated TOFs of the Cp(bpy)FeII catalysts at ~10-3
 s-1.  
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A degree of rate control analysis (DRC) was performed, and it was found that the rate limiting 

steps and sinks of catalysts varied greatly in this family. As catalysts moved towards the 

optimum composition space, more steps in the kinetic cycle became more influential on the TOF 

as these steps began to compete with each other. 

Finally, an additional study was performed on another family of CoII catalysts with fewer 

composition constraints. Utilizing the same analysis described before, PCA found that there were 

two major principal component axes. The first PC corresponded to oxidizability of the catalyst, 

and the second corresponded to reducibility. By plotting these catalysts in PC space it further 

bolstered that PCA is clear way to visualize and navigate composition space of catalysts. This 

was evident when it was seen that the catalysts containing bipyridine (bpy) was far away from 

the other catalysts of this CoII family, as the bpy ligand is reducible.  

  



36 

 

Chapter 3: Free Energy Surface Prediction via Quantified Catalyst 

Properties Case Study: C-H Activation  

Introduction 

Computation has long been used for discovering improved materials/molecules. When a 

computable figure of merit has been identified, discovery often happens by screening many 

candidates and choosing the materials which score highest.  In catalysis, the figure of merit is 

often as simple as one or more bond energies50 (to be optimized using the Sabatier Principle) or 

an activation barrier of a key step51,52 (to be minimized) or features in a solids’ band structure53. 

One of these descriptors are then used to predict relative catalyst activity54. While good 

candidates can be found via screening there are often downsides to this approach. First there is 

often no new understanding of structure/function relationships accumulates as the list of 

candidates is processed. Second, screening does not provide an indication of whether the best 

material has been found/whether the list of candidates contains the optimum composition 

(although the Sabatier Principle55 allows this). Third, simple or 1D figures of merit do not 

capture competing qualities like stability, activity, selectivity. Finally, in catalysis the 

intermediate and elementary step which determine turnover frequency are not the same for all 

potential catalysts in all conditions, so knowledge of only part of the free energy surface (a 

reaction energy or barrier) is insufficient to accurately assign performance to candidates.  As one 

strategy for overcoming these limitations, we have investigated the training of regression models 

to predict condensed catalytic free energy surfaces from the ligand properties of organometallic 

candidates. Successive generations of training data provided by DFT improve the accuracy and 

range of the models, leading to optimized compositions and revealing structure-activity 

relationships conserved in the best performers. 
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Multivariable linear regression techniques were utilized to relate quantified catalytic properties 

and performance as they were more readily interpretable to make sense of the relationship 

between these two phenomena. To get more accurate predictions from a regression trained on 

data with inherent error a relatively large amount of data is required, so simple high throughput 

calculations were utilized. As more DFT calculations were performed catalyst behavior was 

optimized and chemical lessons were learned along the way.  

Methane oxidation, more specifically alkane functionalization, with an Ir III catalyst was the 

case study utilized for this project. Goddard et al. have shown potential reaction pathways from 

methane to methanol utilizing DFT simulations of AuI and AuIII in strong acid solvents56.  There 

has been great precedence for utilizing bipyramidal Ir catalysts as a case study. Periana et al. 

showed viability of H/D exchange in methane with an Ir catalyst57. Later Cundari et al. 

investigated trades offs in designing ligands on Ir III catalysts for C-H activation58. Finally 

Goldman et al. defined electronic factors in the oxidative addition of C-H bonds to IrI 

complexes59. With no desire to reinvent the wheel, this strong basis of the electronic factors 

influencing this chemical process were a great basis to investigate a way to optimize catalyst 

performance.  

While this chemical process was chosen as the case study because of the strong foundation that 

electronic properties of ligands have on this process, there is great importance in alkane 

functionalization as well. Alkane functionalization allows for the conversion of hydrocarbon 

gases to liquids allowing for easier storage and transportation60. Alkane functionalization could 

also be utilized in fuel cells allowing for fuel to be stored and used easily and efficiently 60. 

Finally, controlling alkane functionalization could change the approach to organic synthesis61,62. 
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Figure 3.1. FES of Ir NNC oxidizing methane to methanol. The free energy surface (FES) of the 

full catalytic cycle of CH4 oxidation for IrIII NNC was calculated with DFT in TFA solvent. This 

scheme highlights the most important parts of the cycle are C-H activation, and the two off cycle 

intermediates, the protonated and oxidized intermediate. 

Methods 

Kinetics 

The free energy surface (FES) of the reaction pathway of the Ir NNC complex from Periana et 

al.57 was calculated in TFA solvent with DFT as seen in Figure 3.1. It was proposed to shorten 

the catalytic cycle to reduce the number of DFT calculations required to quantify catalytic 

performance per catalyst. In this scheme the largest barrier is the subject of interest, C-H 

activation. No intermediates that are created in this chemical process are as formidable of a 

barrier as this transition state, however two off-cycle intermediates can influence catalyst 

performance. These oxidized and protonated intermediates are not only indicative of the stability 

of the catalyst as they show ease of protonation and pKa of the catalyst, but they also influence 

how much starting intermediate is available. Concentration of starting intermediate influences 

turnover frequency, which is the main metric of catalytic performance used in this study. It was 

decided to reduce the kinetic scheme to just a few points on the FES: the starting intermediate, 
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the C-H activation barrier, and the protonated and oxidized intermediate. The final scheme, as 

seen in Scheme 3.1 decided on for this project allowed for the anion site and active site to switch 

places. This means there are potentially two ground states, and two transition states. 

 

Scheme 3.1. Abbreviated catalytic cycle. The catalytic cycle can be shortened to the two off-

cycle protonated and oxidized intermediates, the ground state, and the transition state. Since it 

was assumed that the active site and anion could switch places, there could be two possible 

ground states, and therefore two C-H activation transition states, assuming that ligands A and B 

are different.  

This IrIII catalyst as seen in Figure 3.2 has an active site, occupied by water in the starting 

intermediate, and an anion from the solvent, hydroxide from water. Positions A, B, C and C’ are 

occupied by ligands with the A position trans to the active site, B trans to the anion, and C and 

C’ trans to each other.  
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Figure 3.2. Our catalyst, ligand positions and anion and active site. This figure represents our 

catalyst, where A, B, C and C’ are ligand positions. The water is the active site, and hydroxide is 

the anion (from the solvent water). Position A is trans to the active site, B is trans to the anion, 

and C and C’ are trans to each other. 

One of the goals of this project was to easily modulate the catalyst behavior with different 

kinds of ligands. However, the workflow of quantifying each multidentate ligand for a new 

calculation becomes tedious when utilizing a vast number of multidentate ligands, and changes 

to each multidentate ligand may be minimal. Rather than having a large database of multidentate 

ligands, smaller “toy” ligands, as seen in Figure 3.3, were developed to represent fragments of 

larger ligands. A database of relatively few “toy” ligands may then be used to represent a 

plethora of larger multidentate ligands. This not only allows for ease of modulation of electronic 

and steric properties with a relatively small ligand database, but also can reduce the number of 

atoms simulated via DFT, speeding up computational time. 



41 

 

 

Figure 3.3. Toy Ligands. The monodentate ligands used in this report are coined “toy” ligands, 

essentially fragments of larger realistic ligands which. The first eight ligands utilized did not 

include the N-heterocyclic carbene and dimethyl ether ligands. Those two ligands were added at 

the end of analysis. 

There were four properties of ligands that were believed to influence catalyst performance: 

sigma-donicity (how easily a ligand can donate as sigma bond), pi-accepticity (how easily a 

ligand can accept a pi bond), charge, and steric bulk63. To quantify these ligands their geometries 

were optimized via DFT on RuII(NH3)4Cl. From this calculation many methods were utilized to 

quantify these ligand properties. For example, sigma or pi orbital energies could quantify sigma-

donicity and pi-accepticity, respectively. The sigma bond could also be quantified via Ru-Cl 

properties like bond distance and Mulliken charge on Cl. Steric bulk was quantified with 

%volburried via SambVca 2.164.  

Computation 

All computational chemistry simulations were run in ORCA 5.0.311,65. Geometry optimizations 

were performed with density functional theory calculations. Vacuum calculations were 

performed with the B3Pω91 functional15,16,42, D3BJ and def2/J corrections17,18,25, def2-TZVP(-f) 

basis set19, and Los Alamos pseudopotentials and 2Z valence functions for metals22–24 For 
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calculations utilizing solvation, the SMD implicit solvation model was utilized13. The 

temperature was assumed to be 298K. The hydration energy of a proton at 1M was acquired by 

Tissandier et al. as -264.0 kcal/mol27. Correcting this energy to a pH of 7, the Gibbs free energy 

of a proton in solution was assumed to be -279.8 kcal/mol26. Like with the proton hydration 

energy it was assumed a 4.28 V difference between SHE and vacuum28, the free energy of an 

electron was assumed to be -103.3 kcal/mol at 0.2 V vs SHE. 

To speed up computational time thermal corrections were assumed to be constant across all 

catalysts. Only one set of thermal corrections was calculated, for the catalyst Ir III(OMe)(PMe3)3, 

then utilized across all catalysts. Calculations were performed in vacuum except for the 

protonated intermediate. This is because the protonated intermediate has a +1 relative charge to 

everything else on the abbreviated FES, so its electronic energy is inflated.  

The absolute Gibbs free energy was then equal to the sum of the electronic energy and thermal 

corrections, 

G=Ee-+EZPE+PV+Hvib+Htrans+Hrot-T∗(Svib+Se-+Strans+Srot)                                                   Eqn 3.1 

where the electronic energy in italics is unique to each calculation, and the thermal corrections 

are from the IrIII(OMe)(PMe3)3 catalyst.  

Results and Discussion 

Ligand Data 

There were numerous measurements made to describe each electronic property of these 

ligands, so it was believed that maybe all methods of describing each property may not be 

necessary to quantify the catalysts. As seen in figure 3.4, the pi orbital energies are linear 

dependent with each other. When examining the measurements to describe the electronic 

properties of each ligand, it was determined that some measurements were dependent on charge. 
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All orbital energies were found to depend on the charge of the ligand because the calculations 

were performed in vacuum, so the charged ligands had an inflated orbital energy. Furthermore, 

the Mulliken population on chlorine, meant to describe the sigma-donicity of the ligand, was 

found to be higher for anionic ligands than for the neutral ligands. More than all this, it was 

found that there was a high linear correlation between ways of measuring the same property.  

To determine the linearity amongst the descriptor data principal component analysis (PCA) 

was performed on all the descriptor data. Principal component analysis is a method of analyzing 

multidimensional data in the form of an array. Principal component axes are constructed that are 

orthogonal linear combinations of the previous dimensions of the array, where the new 

dimensions in real space lay in the direction of most variance of the data. This analysis found 

that only four principal components (PCs) were needed to describe 99.1% of the variance 

amongst the descriptor data. 

 

Figure 3.4. Ligand property correlation example. The pi orbital energies had strong linear 

correlation. The discrepancy between the top five values and bottom three is due to the bottom 

three being neutrally charged and the top five being anionic. 



44 

 

Many regression schemes are well suited to weeding out unnecessary predictor variables, so 

great apprehension is not necessary when attempting to describe each catalyst quantitatively. 

However, there is an inherent error in DFT, and without being able to pinpoint the sources of and 

consistencies this error turns into noise. As this was the first test case in predicting FESs from 

catalyst properties, it was not known which regression to use, or how to tailor them to balance 

bias and variance. Caution was taken to not introduce unnecessary noise into the descriptor 

variables by utilizing no more than one descriptor of each ligand. 

To decrease redundancy in the descriptor data, measurements were selected to describe 

properties that were not dependent on charge. The sigma-donicity was described by the Ru-Cl 

bond distance. The pi-accepticity was described via the sum of the dxz and dyz pi orbital energy. 

The pi-accepticity was only quantified via orbital energies, so the effect of charge could not be 

separated from this measurement. However, the charge of the ligand was utilized as descriptor 

data, as the pi-accepticity alone would not be enough to describe the charge of the ligand. 

Finally, the steric bulk of each ligand was quantified with the %volburried via SambVca 2.1 

utilizing the default settings64. 

As previously stated, the goal of this project is not necessarily to find the best catalyst, but to 

find the way to find the best catalyst in the most efficient way possible. It was believed that the 

best way to do this was to optimize towards certain catalyst behavior, in our case, highest 

turnover frequency.  This would be done by first building a training set of FESs then using that 

training set to predict all possible 2304 catalysts. The best few catalysts predicted by the 

regression would have their FES generated via DFT, then added to the training set. This 

algorithm is visualized in Figure 3.5. This process would be repeated until the algorithm 

converged, or the best predicted catalysts already existed in the training set.  
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Figure 3.5. Catalyst optimization algorithm. This algorithm describes the general methodology 

to optimize towards a catalyst property with the “best catalyst” being that with the highest 

turnover frequency. In closed system the with a fixed number of catalysts, 2034, it is impossible 

for this algorithm to diverge. 

With an astounding 2034 possible catalysts it is difficult to know where to start building a 

training set for predicting all of these catalysts and finding the best one. Chemical intuition and 

understanding of the goal at hand can be a good guide when taking a shot in the dark.  

At the beginning of modeling, an educated guess was taken that using mostly neutral ligands 

on the catalyst would probably be preferable as they would provide the catalyst with a higher 

oxidation potential which would make it more difficult to change Ir III into IrIV. Resistance to 

oxidation would allow for more relative starting intermediate, and because turnover frequency is 

dependent on starting intermediate concentration, create a higher turnover frequency. For this 
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reason the first round of catalysts whose free energy surfaces were mapped utilized trimethyl 

amine for most of their ligands. Trimethyl amine was utilized primarily in the C and C’ locations 

on the catalyst, and the A and B ligands (mostly A) were varied. The A ligand was varied most 

because it is trans to the active site, so the ligand in position A should affect the catalyst behavior 

the most. The B ligand is trans to the solvent, so it was theorized that it would have the second 

largest effect on the catalyst. The C and C’ ligands are trans to each other, so their effect was 

theorized to be the least influential on the catalyst. 

 The first 10 catalysts or so took an unexpectedly long time to converge via DFT due to 

the utilization of the trimethylamine ligand. Because this ligand is monodentate with many 

substituents, it can freely rotate which can make it take quite some time to find a stable 

conformation. The purpose of utilizing toy ligands was not only to be able to modulate catalyst 

behavior, but also reduce the time of each calculation so that many calculations could be 

performed. For this reason, the next round FESs calculated via DFT utilized catalysts with 

pyridine ligands in place of trimethylamine as they are neutral but do not have so many moving 

parts. 

After calculating the FESs via DFT for around 20 catalysts of similar ligand compositions, 

partial least squares regression (PLSR) and elastic net regression were utilized to predict the FES 

of all possible catalysts (2304) with every ligand conformation of our ligand set. Elastic net and 

PLSR are two regression methods to relate multidimensional descriptor data to outcome data. 

Elastic net utilizes a penalty function to combine both techniques from LASSO and Ridge 

regression, both of which fit weights in multivariable regressions to relate descriptor data to 

outcome data. Partial least squares regression is slightly similar to PCA in that both descriptor 

and outcome data are first reduced in size through a linear transformation before being related to 
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each other through a regression equation. When utilizing the maximum number of PLS 

components in the regression, thousands of combinations of catalysts were predicted to have a 

negative transition state. Unphysical results like negative transition states means that the 

prediction quality is poor, and searching for a good catalyst amongst the thousands is impossible 

if the results are so inaccurate that potentially good candidates are considered poor ones.  

Further work was done to look at the current training set of catalysts. When examining the in-

sample predictions with PLSR and elastic net, the regression performed relatively well. Then a 

round robin style algorithm was performed to test prediction performance. In this algorithm a 

group of a few catalysts were set aside as validation data at random, then the remaining catalysts 

were utilized to train a regression and predict the validation data. This was performed again and 

again until all catalysts were predicted as validation data. The results of this style of algorithm 

showed that the error was much larger than when regressions were trained on the data. In fact it 

was found that sometimes with elastic net no correlation was found at all, meaning that elastic 

net predicted the same FES regardless of the predictor data. This result is indicative of too much 

bias in the regression. 

It was clear that the model was doing a poor job at predicting catalysts that were highly 

different from those of the training set as seen in Figure 3.6. This comes as no surprise as PLSR 

is known for having poor prediction quality when predicting values that are very unlike the 

training set. Although at this point the training set wasn’t small, the compositions in the training 

set were not well varied. The most logical solution at this point was to add more data to the 

training set, for adding more variance to the training set will give regressions a broader picture of 

the relationships between the descriptor variables of the catalysts and their free energy surfaces.  
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It was proposed to just start optimizing towards a desired property in the catalysts. This means 

to just add FESs via DFT of the best predicted catalysts. However, it was clear that prediction 

quality was quite low outside of the sample family. It was believed that a better, more thoughtful 

approach to creating an initial data set would provide for faster and more robust optimization. 

“Garbage in, garbage out.” 

One proposed idea was to add the FESs of the catalysts with the worst quality of predictions as 

the training set lacks catalysts in that region of chemical space. However, besides the catalysts 

that were predicted to have a negative TS the quality of prediction could not be quantified. 

Additionally, there were thousands of catalysts that had a predicted negative transition state. It 

was unfeasible to calculate the FES’s of all those catalysts, and it would be taking a shot in the 

dark to choose any of those catalysts at random.  

 

Figure 3.6. In and out of sample initial predictions. The in-sample catalyst predictions (left) 

were relatively accurate for both elastic net and PLS regressions. When a round robin style 

scheme to predict out of sample (right) was utilized neither regression techniques excelled.  

It was clear what needed to be done, to add the most amount of variance possible to the 

training set with the fewest number of catalysts. To do so, catalysts need to be added to the 
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training data such that each catalyst is very different from each other, so that a broad picture of 

the relationships between catalyst properties and function may be captured by a regression. To 

generate this highly varied data set PCA was performed on the catalyst descriptor data for the 

thousands of catalysts, and the catalysts to be added to the training set were selected via PCA 

scores. Catalysts were chosen that lie on the outermost edges of principal component (PC) space, 

both negative and positive, for the first several PCs. This idea is illustrated in Figure 3.7, the 

most extreme PCA values are circled in red. Adding these catalysts greatly improved prediction 

quality and reduced the number of negative transition states. 

 

Figure 3.7. Data set building through PCA illustration. To add more variance to the data set 

PCA was performed on the descriptor data of all possible 2304 catalysts. This figure is an 

illustration of a PCA analysis performed on predictor data with the most extreme scores circled 

in red. These extremes would be chosen to add DFT generated FES data for. 

Once the training set was updated and the predictions were improved, the search for the best 

catalyst began. The PLSR was used to predict the thousands of possible catalysts, and then the 

FES was found via DFT for the best catalyst amongst these predictions. It was at this point where 

it was determined a new kinetic scheme needed to be implemented as the active site and anion 

site were switching for many of the best catalysts. Prior to this point it was assumed that each 
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catalyst’s active site would stay in place, and this assumption was only made to reduce the 

number of DFT calculations required for each catalyst. This realistically shouldn’t be expected, 

and it makes more sense that the active site should be able to act as the anion site, and vice versa.  

Once this change was made, this procedure reduced the number of total catalysts run as any 

catalysts where the A ligand was different from the B ligand could not be used in the training set 

unless the BA version of that catalyst was also there. To expand the training set, the same 

procedure was continued as before: 1) use PLSR to predict the thousands of possible catalysts 

(now slightly reduced to 1296 as AB catalysts were considered to be the same as BA catalysts), 

2) find the “best” performing catalysts of the thousands—determined by highest TOF—3) 

calculate the FES of these “best” catalysts via DFT. This procedure was performed for several 

more catalysts until the algorithm converged, or the best catalyst predicted was the same after 

that best catalyst had been added to the training set. The out of sample results may be seen for 

elastic net and PLS in Figure 3.8. From this figure it is clear that error is much smaller than that 

seen in Figure 3.6, and elastic net and PLSR perform relatively similar. 
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Figure 3.8. Final regression prediction results. After many catalysts FES had been generated and 

the optimization was farther along, out of sample predictions were made. These predictions were 

much lower in error, and elastic net and PLS perform relatively similarly. 

The best catalyst was dependent on the number of PLS components utilized for predictions. 

However, it was seen that the best catalysts tended to have weaker sigma donors in the A and B 

position. For example, utilizing the maximum number of PLS components the best catalyst was 

found to be IrIII(OSO2Me)(Ph)(Cyn)(Cyn). However, it wasn’t clear whether this algorithm 

converged at a local maximum or an absolute maximum. It was proposed that maybe the current 

ligand set was the limiting factor in finding a global maximum. Better catalysts may exist that 

utilize ligands with just slightly different properties than the ligands utilized thus far. It was 

proposed to construct predictor data for theoretical ligands: ligands with unknown chemical 

structure that only exist as descriptor data. This allowed for catalyst properties to be varied on an 

even finer scale and with different combinations of data. Without knowing what these ligands 

would look like it was safer to not have wildly different properties than the current eight ligands 

utilized. Each of the theoretical ligand’s properties (sigma-donicity, pi-accepticity, and steric 

bulk) could be one of three values, either the mean of said property of the eight ligands, or plus 

or minus two times the standard deviation of that property. This three-by-three-by-three grid 

(three possible values and three possible properties, sigma-donicity, pi-accepticity, and steric 

bulk) makes 27 ligands, and with the possibility of being anionic (-1), or neutral, makes 54 

ligands. Four possible locations to put the ligands on the catalyst and A and B being the same 

position as well as C and C’ being the same position then makes 4.3 million possible catalysts.  

Utilizing the PLSR constructed with all the current catalysts with DFT acquired FESs, these 

4.3 million catalysts with theoretical ligands were predicted and organized from best to worst. 
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With a relatively small training set compared to 4.3 million catalysts there were bound to be 

many with unphysical values. Obviously unphysical predictions were thrown out and the 

remaining catalysts were analyzed. Changing the number of PLS components greatly changed 

the quality and predictions of catalysts, and what was considered the best catalyst. Except when 

utilizing only one PLS component for predictions, one trend was clear: the catalysts with the 

highest TOFs had strong sigma donors in the C and C’ position, weaker sigma donors in the A 

and B position, and mostly neutral ligands.  

The reasoning behind this phenomenon is relatively intuitive for the A and B position. Weaker 

sigma donors trans to the anion allows the anion metal bond length to become shorter making the 

anion more basic. This allows the anion to more easily accept the proton from the methane. The 

methane is also stabilized by having a weak sigma donor trans to it. Neutral ligands impart 

stability against protonation and oxidation of the starting intermediate.  

To attempt to improve the predictions for the 4.3M catalysts, the FES was calculated via DFT 

for two catalysts: IrIII(OMe)2(PMe3)2 and IrIII(OSO2Me)2(PMe3)2. Both catalysts have strong 

sigma donors in the C and C’ position, and weak sigma donors in the A and B positions. The 

FESs of these two catalysts did not have extraordinarily low TSs, however, once their data was 

used as part of the training data for the PLS regression it did improve the FES predictions by 

PLSR. The highest TOFs of the 4.3 million catalysts were no longer in the 107-8 sec-1 range, but 

rather in the 104 sec-1. These best FESs of the 4.3 million were still unphysical, with both the TSs 

hovering near 10 kcal/mol, however this was a significant improvement with the addition of only 

two catalysts to the training set. 

Again, the FES of these best catalysts showed comparable properties, weak sigma donors for 

the A and B positions, strong sigma donors in the C and C’ positions, and mostly neutral ligands. 
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Because of this, two new neutrally charged ligands were run on the Ru(Cl)(NH3)3 molecule to 

collect ligand property data. An N-heterocylcic carbene (NHC) was meant to be a slightly strong 

sigma donor. Dimethyl ether was the weakest sigma donor yet, according to the Cl-Ru bond 

distance.  Four new catalysts with these ligands were added to the training set and there were 

minimal improvements to the predicted FESs of the 4.3 million catalysts. Looking back on all 

the data it was clear that there was error stemming from the use of monodentate ligands. These 

freely rotating monodentate ligands often formed strange configurations having hydrogen bonds 

that normally wouldn’t occur in multidentate ligands. This error seen translates to noise which 

greatly decreases prediction quality by the regressions. This error needs to be considered when 

predicting FESs. 

Tridentate Ligands 

 

 

NHC- Ir 

Dist 

(A) 

H2O-I 

Dist 

(A) 

Ir5s 

Orbital 

(Eh) 

Relative 

Bond to Ir 

(kcal/mol) 

d-pi 

antibond 

with OH 

(Hartree) 

D-pi 

Antibond 

with NHC 

(Hartree) 

D-pi 

antibond 

with 

nothing  

(Hartree) 

Cp 2.022 2.231 -3.724 0 -0.2310 -0.2518 -0.2463 

Tpm 2.018 2.116 -3.733 10.5 -0.2331 -0.2618 -0.2429 

Tp 2.018 2.132 -3.715 32.3 -0.2216 -0.2466 -0.2274 

Tpym 2.026 2.120 -3.736 13.9 -0.2373 -0.2787 -0.2479 

Tpyr 2.027 2.131 -3.726 26.9 -0.2310 -0.2712 -0.2415 

TpCF3 2.013 2.098 -3.740 -3.69 -0.2339 -0.2831 -0.2465 

TpmCF3 2.017 2.091 -3.759 -24.2 -0.2460 -0.3022 -0.2981 

C3POch3 1.983 2.073 -3.719 -34.3 -0.2218 -0.2259 -0.2530 
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TpymB 2.024 2.142 -3.719 37.2 -0.2252 -0.2858 -0.2622 

Table 3.1. Tridentate Ligand Data 

The final step of this process was to create realistic ligands with lessons learned thus far. Like 

the Ir NNC ligands, several tridentate ligands were theorized, constructed, and analyzed via 

DFT. While some well-known ligands were utilized, several novel ligands were constructed. 

Examples of these ligands can be seen in Figure 3.9. These tridentate ligands were meant to be 

like tris(pyrazolyl)borate (Tp) ligands that would rigidly occupy A, B, and C positions, with the 

C’ position being occupied by the strong sigma donor N-heterocyclic carbene. Similar to the 

analysis with the toy ligands performed on the Ru(Cl)(NH3)3 molecule, these molecules were 

placed on the Ir atom along with an NHC ligand with a water and hydroxide bound (the starting 

intermediate) and their properties were recorded. These properties may be seen in Table 3.1. The 

NHC-iridium bond distance and water-iridium bond distance were used to quantify the sigma-

donicity of the Tp ligand. The overall electron richness of the active site was quantified by the Ir 

5s orbital energy. The complex and free ligand energies were also recorded to approximate the 

relative binding energy of the ligand to the metal. Finally, the pi-accepticity was quantified by 

visualizing the orbital energies and recording the various d-pi antibonds with OH, NHC, and 

nothing. 
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Figure 3.9. Tridentate ligands. These figures show the chemical structure of a few of the lesser-

known tridentate ligands utilized in this analysis. Ligands like Tp and Tpm are relatively well 

known, however lesser-known ligands like Tpym and Tpyr are shown to distinguish their 

characteristics. 

Many of these catalysts with Tp derivatives had their abbreviated FES simulated, but only two 

catalysts had their full FES calculated via DFT, tris(pyrazolyl)methane (Tpm) and 

tris(pyrimidyl)methane (Tpym). These free energies can be seen in Figure 3.10. Relative to 

(NNC)Ir(TFA)2 the results were promising. Both Tpm and Tpym complexes had lower C-H 

activation transition state barriers and were more resistant to oxidation than the NNC complex, 

while the protonated intermediates remained endergonic.  
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Figure 3.10. FES of tridentate ligand catalysts. The full FES was calculated with DFT in 

solvation for two catalysts, tris(pyrazolyl)methane (Tpm) and tris(pyrimidyl)methane (Tpym), 

with promising results. These catalysts had low C-H activation transition states, unfavorable 

oxidized intermediates, and endergonic protonated intermediates. 

Categorical Regression 

Post analysis another regression model was tested to see if it faired better: categorical 

regression. Categorical regression creates a binary style categorical model for predictor variables 

x, and then performs a standard linear regression for each outcome variable y. For example: if 

ligand position A can be ligands w, v and u, then the vector representing ligand A is three 

variables long and One Hot Encoded (if one value in the vector is one the others must be zero). 

In this way ΔGij, where i denotes the intermediate or transition state and j denotes a certain 
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catalyst, can be thought of as the average ΔGi plus a sum of perturbations due to the presence of 

a particular ligand at one of the sites.  

There are pros and cons of using categorical regression. The largest benefit is that it takes out 

inherent user bias. We believe that our measured properties, sigma-donicity, pi-accepticity, 

sterics, and charge, and the way we measure them are the most important predictors, but that 

could not be the case. Utilizing unbiased x variables may lead to better predictions that don’t get 

skewed by these measured properties or our intuition. 

The downside of categorical regression is that it is noncontinuous, which bounds the predictor 

data. Utilizing measured descriptors allows for more predictions outside of training data, and 

categorical descriptions limits predictions to strictly combinations of the training data. For 

example, if there are 10 ligands and the training data utilizes all 10 ligands on ligand positions A, 

C, and C’, but only 7 ligands on position B, then FES predictions on catalysts that contain the 

other 3 ligands will be inaccurate and not properly described by predictor variables. Even with a 

relatively large and robust data set all possible ligands may not be utilized on all A, B, C, and C’ 

positions. With a predictor data set like this, it would not be able to properly analyze all possible 

2304 catalyst ligand combinations. More than this, the data is noncontinuous, so analyzing 

entirely different ligands is impossible. Some of the most insightful chemical lessons in this 

report came from analyzing the PLS predicted FESs of 4.3 million catalysts utilizing 54 

“theoretical ligands.” This was achieved because the these catalysts had ligand properties that 

were varied in a different manner than the known 10 ligands given in previous the analysis.  

The other downside of categorical regression is interpretability in relation of structure to 

function. Categorical regression is able to inform the user what different ligand combinations 

may create the best performing catalyst within limitations of the training set, but doesn’t provide 
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insight as to why. Because ligands are one hot encoded, categorical regression alone doesn’t 

provide insight into what properties are useful in each ligand position. To perform this analysis, 

one would have to measure many different ligand properties like we did earlier in this text. Even 

once data on each ligand is collected, it must be determined that these properties are actually 

influential on the catalyst performance, and that the method of measuring these properties is 

actually relevant to the theorized properties themselves.  

The results in a round robin style validation set resulted in Table 3.2. In this analysis only 

ligands A, B and C were utilized in the categorical regression. It was found that utilization of the 

C’ ligand did not improve out of sample predictions. It is clear from this analysis that the PLS 

regression performed relatively better than the categorical except for the oxidized 2OH 

intermediate. Although the span in Gibbs free energy of the oxidized intermediate is larger than 

that of all other states, the larger error compared to the other states is most likely due to hydrogen 

bonds being created in this intermediate. The calculation for the oxidized intermediate were not 

performed in solvation, whereas the other states, ground state, and protonated intermediate were. 

This resulted in more hydrogen bonds being formed in these calculations. The simplest 

explanation as to why categorical regression predicts the oxidized intermediate free energies 

better than PLS is: hydrogen bonding effects are unrelated to our measured predictor properties. 

It would make sense that pi-accepticity, sigma-donicity, steric bulk, and charge have no 

predictive value of a hydrogen bond being present in the oxidized intermediate. However a 

certain ligand may be more likely to hydrogen bond than another, and categorical regression fits 

the free energies regardless of their chemical origin.  

 2OH TS 2W TS2 GS2 

PLS MSE 12.0 3.7 3.6 4.6 2.5 
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Categorical 

MSE 

8.2 4.0 5.2 5.4 2.9 

Table 3.2. Categorical vs PLS Mean Squared Error (MSE). 

Conclusion 

This body of work outlines the use of computational chemistry and regression techniques to 

relate quantified catalyst structure to function in an efficient manner to optimize catalyst 

behavior and learn chemical lessons along the way. Methane oxidation, more specifically C-H 

activation, performed by an IrIII catalyst in water is used as a case study. Quantified ligand 

properties were used to predict FESs which could then be used to compute TOF to quantify 

catalyst performance. 

Monodentate “toy” ligands were utilized in place of more realistic ligands to reduce 

computational costs, increasing the throughput, as well as to easily modulate electronic and steric 

properties of catalysts. Computational time and errors in FESs often increase because of the 

many conformations possible with freely rotating monodentate ligands. These toy ligands were 

quantified with DFT by optimizing their geometry on RuII(NH3)4Cl. Properties of interest for the 

ligands include: sigma-donicity, pi-accepticity, charge, and steric bulk characterized by Ru-Cl 

bond distance, the sum of dxz+dyz orbital energy, charge, and %vol , respectively. Several 

methods for each property were initially measured for characterization. However, PCA revealed 

strong correlation between different ways of measuring any given property. Due to known errors 

of DFT it was believed there was no reason to introduce unnecessary noise into regressions.  

During the process of building the data set to relate catalyst structure to function, both 

chemical and algorithmic lessons were learned. Chemical intuition can be a good start to 

building a data set, however having a broader data set allows for more accurate predictions in a 

broader catalytic space. Principal component analysis was found to be a useful tool to increase 
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variance of a data set allowing for better predictions across all chemical space. Optimizing 

towards a given property (adding data to the training set of the predicted best values), allows for 

chemical lessons to emerge in that chemical space as prediction quality increases even while 

errors can still be large. Finally, in this case study, it was found that even with relatively large 

errors, chemical trends were seen in the best catalysts. Neutral ligands impart stability against 

protonation and oxidation of the catalyst. While it is still unsure of the influence of having strong 

sigma donors on the C and C’ ligand position, it is believed that weak sigma donors in the A and 

B positions most likely decrease the C-H transition state barrier height, and neutral ligands 

stabilize the catalyst against oxidation and protonation. 

Finally, another similar analysis was performed on the DFT generated FES, utilizing 

categorical regression with one hot encoding rather than PLSR or elastic net. It was found that 

categorical regression was found to predict the oxidized intermediate better than PLSR. This is 

theorized to be likely due to the hydrogen bonds formed during the DFT geometry optimization 

of the oxidized intermediate, and the fact that these hydrogen bond effects aren’t describable by 

or related to the measured predictor properties.  
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